Sequential Dynamic Leadership Inference Using Bayesian Monte Carlo Methods
نویسندگان
چکیده
منابع مشابه
Bayesian Phylogenetic Inference using a Combinatorial Sequential Monte Carlo Method
The application of Bayesian methods to large scale phylogenetics problems is increasingly limited by computational issues, motivating the development of methods that can complement existing Markov Chain Monte Carlo (MCMC) schemes. Sequential Monte Carlo (SMC) methods are approximate inference algorithms that have become very popular for time series models. Such methods have been recently develo...
متن کاملOn Monte Carlo methods for Bayesian inference
Bayesian methods are experiencing increased use for probabilistic ecological modelling. Most Bayesian inference requires the numerical approximation of analytically intractable integrals. Two methods based on Monte Carlo simulation have appeared in the ecological/environmental modelling literature. Though they sound similar, the Bayesian Monte Carlo (BMC) and Markov Chain Monte Carlo (MCMC) met...
متن کاملSpike inference from calcium imaging using sequential Monte Carlo methods.
As recent advances in calcium sensing technologies facilitate simultaneously imaging action potentials in neuronal populations, complementary analytical tools must also be developed to maximize the utility of this experimental paradigm. Although the observations here are fluorescence movies, the signals of interest--spike trains and/or time varying intracellular calcium concentrations--are hidd...
متن کاملSequential Monte Carlo Methods for Dynamic Systems
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive o...
متن کاملBayesian Inference in Decomposable Graphical Models Using Sequential Monte Carlo Methods
In this study we present a sequential sampling methodology for Bayesian inference in decomposable graphical models. We recast the problem of graph estimation, which in general lacks natural sequential interpretation, into a sequential setting. Specifically, we propose a recursive Feynman-Kac model which generates a flow of junction tree distributions over a space of increasing dimensions and de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Aerospace and Electronic Systems
سال: 2021
ISSN: 0018-9251,1557-9603,2371-9877
DOI: 10.1109/taes.2021.3054693